Repositório Institucional

    • Login
    View Item 
    •   DSpace Home
    • Engenharia
    • Anais de Eventos
    • View Item
    •   DSpace Home
    • Engenharia
    • Anais de Eventos
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsAuthorsSubjectsThis CollectionAuthorsSubjects

    My Account

    LoginRegister

    Linear multivariable identification using observable state space parameterizations

    xmlui.dri2xhtml.METS-1.0.item-type
    Trabalho apresentado em evento
    Date
    2013
    Author
    Romano, Rodrigo Alvite
    Pait, Felipe M.
    Metadata
    Show full item record
    Abstract
    The selection of a suitable parameterization for the plant model, a crucial step in the identification of multivariable systems, has direct impact on the numerical properties of the parameter estimation algorithm.We employ a parameterization, particularly suitable for system identification, which has the following properties: observability, match-point controllability, and matchability. Using it, the number of model parameters is kept to a minimum, no undesired pole-zero cancellations can appear, and the use of nonlinear estimation is not necessary. We relate this parameterization to classical autoregressive model structures, and propose an algorithm for parameter estimation. By means of Monte Carlo simulations it is found that the algorithm is promising: fewer data points and lower signal-to-noise ratio are required to obtain results that are similar or better than those obtained by traditional methods. © 2013 IEEE.
    1. Model structures
    2. Monte Carlo methods
    3. Multivariable systems
    4. Parameterization
    5. Signal to noise ratio
    6. Auto regressive models
    7. Data points
    8. Direct impact
    9. Model parameters
    10. Multivariable identifications
    11. Non-linear estimation
    12. Numerical properties
    13. Pole zero cancellation
    14. Parameter estimation
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-84902352584&doi=10.1109%2fCDC.2013.6760083&partnerID=40&md5=703678bd2b09a5d1e829b5ac417cc06b
    https://repositorio.maua.br/handle/MAUA/917
    Collections
    • Anais de Eventos

    Contact Us | Send Feedback
    Instituto Mauá de Tecnologia - Todos os direitos reservados 2021
     

     


    Contact Us | Send Feedback
    Instituto Mauá de Tecnologia - Todos os direitos reservados 2021