Repositório Institucional

    • Login
    View Item 
    •   DSpace Home
    • Engenharia
    • Anais de Eventos
    • View Item
    •   DSpace Home
    • Engenharia
    • Anais de Eventos
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsAuthorsSubjectsThis CollectionAuthorsSubjects

    My Account

    LoginRegister

    Recursive identification of multivariable systems using matchable-observable linear models

    xmlui.dri2xhtml.METS-1.0.item-type
    Trabalho apresentado em evento
    Date
    2016
    Author
    Romano, Rodrigo Alvite
    Pait, Felipe M.
    Metadata
    Show full item record
    Abstract
    This paper presents a recursive parameter estimation algorithm based on a matchable-observable parameterization of multivariable process models. As a consequence of the properties of the models used, no undesired pole-zero cancellations appear, the number of model parameters is not excessive, linear least-squares estimation methods are applicable, and parameter estimation can be accomplished without the need for iterative or nonlinear optimization. The performance of the algorithm developed is assessed in comparison with a well-established recursive subspace method, in a simulation study with time-invariant and time-varying scenarios. The results obtained demonstrate the accuracy and effectiveness of the proposed approach. © 2016 IEEE.
    1. Iterative methods
    2. Least squares approximations
    3. Multivariable systems
    4. Nonlinear programming
    5. Optimization
    6. Linear least squares estimations
    7. Multivariable process
    8. Non-linear optimization
    9. Pole zero cancellation
    10. Recursive identification
    11. Recursive parameter estimation
    12. Recursive subspace method
    13. Simulation studies
    14. Parameter estimation
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994218606&doi=10.1109%2fCCA.2016.7587915&partnerID=40&md5=756264cb078c4282c0b1c34440dbe45f
    https://repositorio.maua.br/handle/MAUA/876
    Collections
    • Anais de Eventos

    Contact Us | Send Feedback
    Instituto Mauá de Tecnologia - Todos os direitos reservados 2021
     

     


    Contact Us | Send Feedback
    Instituto Mauá de Tecnologia - Todos os direitos reservados 2021