Superficial residual stress, microstructure, and efficiency in similar joints of AA2024-T3 and AA7475-T761 aluminum alloys formed by friction stir welding
Abstract
Friction stir welding (FSW) represents a conceptually simple technique that consists of joining either similar or dissimilar solid-state materials through higher plastic deformation rates. FSW is an important technique in the aeronautical and aerospace industries, and its development is vital because of the significant difficulty in joining higher resistance AA 2000 and AA 7000 aluminum alloys with conventional techniques, like fusion welding, due to porosity and mechanical property losses. Thin sheets with a 1.6-mm nominal thickness of AA2024, heat treated to condition T3, and thin sheets with a 1.6-mm nominal thickness of AA7475, heat treated to condition T761, were used to investigate the influence of welding parameters under superficial residual stress and the efficiency of joints by FSW of AA2024-T3 and AA7475-T761 aluminum alloys. A central composite design (CCD) was used as a statistical model in this study (23 factorial points, six stellar points, two central points, and two replicas). Micrographic analysis showed that in the nugget zone of the AA7475-T761 alloy, there was hardness recovery. The fractography images showed that failures occurred mainly due to the joint line remnant defect, evidenced by the presence of cracks. The superficial residual stresses show a maximum value of 81 MPa at the advancing side in run 27 (hot welding) of AA2024-T3, whereas in AA7475-T761, a value of 57 MPa was found in the same run. Finally, tensile strength represents an efficiency of ~92% of the AA2024-T3 base metal value, while for AA7475-T761, this value was ~85%. From a component design perspective, the parameter window of this study is identified as interesting for its evaluation in the possible application in component manufacturing, due to the low values of superficial residual stresses found compared to those in previous work. © 2021, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
- Aluminum
- Design of experiment
- Friction stir welding
- Superficial residual stresses
- Aerospace industry
- Aluminum alloys
- Efficiency
- Fracture mechanics
- Friction
- Joining
- Research laboratories
- Residual stresses
- Tensile strength
- Central composite designs
- Component manufacturing
- Conventional techniques
- Friction stir welding(FSW)
- Micrographic analysis
- Nominal thickness
- Statistical modeling
- Welding parameters
- Friction stir welding
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106517341&doi=10.1007%2fs00170-021-07238-5&partnerID=40&md5=1b80c8e79391b5c417873d79387c4471https://repositorio.maua.br/handle/MAUA/1382
Collections
Related items
Showing items related by title, author, creator and subject.
-
Friction stir spot welding lap-shear force analysis of automotive low-carbon steel sheets joint (Artigo de Periódico)
Barbosa, Carlos E C; Batista, Marcio; Batalha, Gilmar F; Siqueira, Rafael H M de; Bordinassi, Éd C; Farias, Adalto; Delijaicov, Sergio (SAGE Publications Ltd, 2024)This study aims to provide reference values and outcomes to support the practical implementation of friction stir spot welding in the automotive industry. This study investigated the friction stir spot welding of AISI/SAE ... -
Use of tribological and AI models on vehicle emission tests to predict fuel savings through lower oil viscosity (Trabalho apresentado em evento)
Tomanik, Eduardo; Tomanik, Victor; Morais, Paulo (SAE International, 2021)On urban and emission homologation cycles, engines operate predominantly at low speeds and part loads where engine friction losses represent around 10% of the consumed fuel energy but would account for 25% of the fuel ... -
Parking brake reaction bracket loads determination. (Trabalho apresentado em evento)
Terra, Rafael Tedim; Dos Santos, Alex Cardoso; Cutrale, Vitor (SAE International, 2021)The intermediate bracket between the parking brake lever and the conduit receives a reaction force due to the cable friction with the cable. The determination of this force by physical directly measurement is very complicated, ...