Repositório Institucional

    • Login
    View Item 
    •   DSpace Home
    • Engenharia
    • Artigos de Periódicos
    • View Item
    •   DSpace Home
    • Engenharia
    • Artigos de Periódicos
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsAuthorsSubjectsThis CollectionAuthorsSubjects

    My Account

    LoginRegister

    Matchable-Observable Linear Models and Direct Filter Tuning: An Approach to Multivariable Identification

    xmlui.dri2xhtml.METS-1.0.item-type
    Artigo de Periódico
    Date
    2017
    Author
    Romano, Rodrigo Alvite
    Pait, Felipe M.
    Metadata
    Show full item record
    Abstract
    Identification of linear time-invariant multivariable systems can best be understood as comprising three separate problems: selection of system model structure, filter design, and parameter estimation itself. Approaching the first using matchable-observable models originally developed in the adaptive control literature and the second via direct or derivative-free optimization, effective least-squares algorithms can be used for parameter estimation. The accuracy, robustness and moderate computational demands of the methods proposed are demonstrated via simulations with randomly generated models and applied to identification using real process data. The results obtained are comparable or superior to the best results obtained using standard implementations of the algorithms described in the literature. © 1963-2012 IEEE.
    1. Direct optimization
    2. multivariable systems
    3. parameter estimation
    4. system identification
    5. Bandpass filters
    6. Identification (control systems)
    7. Multivariable systems
    8. Optimization
    9. Adaptive Control
    10. Computational demands
    11. Derivative-free optimization
    12. Direct optimization
    13. Filter designs
    14. Least squares algorithm
    15. Linear time invariant
    16. Multivariable identifications
    17. Parameter estimation
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018309755&doi=10.1109%2fTAC.2016.2602891&partnerID=40&md5=8f54f0080e9bc42f48846d8146145bd0
    https://repositorio.maua.br/handle/MAUA/1282
    Collections
    • Artigos de Periódicos

    Contact Us | Send Feedback
    Instituto Mauá de Tecnologia - Todos os direitos reservados 2021
     

     


    Contact Us | Send Feedback
    Instituto Mauá de Tecnologia - Todos os direitos reservados 2021