Show simple item record

dc.contributor.authorFiorelli, F.A.S.
dc.contributor.authorSilva, C.A.S.
dc.contributor.authorHuerta, A.A.S.
dc.date.accessioned2024-10-15T21:08:35Z
dc.date.available2024-10-15T21:08:35Z
dc.date.issued2013
dc.identifier.issn1359-4311
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84870991766&doi=10.1016%2fj.applthermaleng.2012.09.037&partnerID=40&md5=de886cb658330ab75feb54c6f746f382
dc.identifier.urihttps://repositorio.maua.br/handle/MAUA/1242
dc.description.abstractThis work presents the results of an experimental study on the metastable flow of R-410A through adiabatic capillary tubes. Capillary tubes with internal diameter of 1.089, 1.381 and 1.643 mm, and length of 1500 mm, were tested for condensation temperatures ranging from 45 °C to 55 °C and subcooling degrees between 4 °C and 10 °C. Underpressure of vaporisation and metastable region length were evaluated from temperature profiles, inlet pressure, mass flow rate and friction factor equations for each capillary tube. A correlation based on experimental data was developed for predicting underpressure of vaporisation. Such correlation presented an average error of 21.8%, and predicted 82% of the experimental values within a ±30% range. The correlation was included in a capillary tube simulation model previously developed by the authors, and the validation indicated that, for smaller diameters, the introduction of the metastability effect virtually eliminates the difference between mass flow rate experimental values and simulation results, with small remaining differences that can be credited to numerical errors and measurement uncertainties. For the larger tube diameter, wherein the metastability phenomenon is less intense, the simulation model shows mass flow rate differences ranging from +2.2 to +5.3% for 85% of the cases. © 2012 Elsevier Ltd. All rights reserved.en
dc.description.sponsorshipFAPESP
dc.description.sponsorshipCNPq
dc.languageInglêspt_BR
dc.relation.ispartofApplied Thermal Engineering
dc.rightsAcesso Restrito
dc.sourceScopusen
dc.subjectCapillary tubesen
dc.subjectExperimental correlationen
dc.subjectMetastable flowen
dc.subjectSimulation modelen
dc.subjectComputer simulationen
dc.subjectPipe flowen
dc.subjectTubes (components)en
dc.subjectUncertainty analysisen
dc.subjectVaporsen
dc.subjectAdiabatic capillary tubeen
dc.subjectAverage errorsen
dc.subjectCondensation temperatureen
dc.subjectExperimental studiesen
dc.subjectExperimental valuesen
dc.subjectFriction factor equationsen
dc.subjectInlet pressuresen
dc.subjectInternal diametersen
dc.subjectMass flow rateen
dc.subjectMeasurement uncertaintyen
dc.subjectMetastabilitiesen
dc.subjectMetastability effecten
dc.subjectMetastable regionen
dc.subjectNumerical errorsen
dc.subjectRemaining differencesen
dc.subjectSubcoolingsen
dc.subjectTemperature profilesen
dc.subjectTube diametersen
dc.subjectUnderpressureen
dc.titleMetastable flow of R-410A in capillary tubesen
dc.typeArtigo de Periódicopt_BR
dc.identifier.doi10.1016/j.applthermaleng.2012.09.037
dc.description.affiliationMechanical Engineering Department, Escola Politécnica, University of São Paulo, 05508-030 São Paulo, SP, Av. Prof. Mello Moraes, 2231, Brazil
dc.description.affiliationMauá Institute of Technology, 09580-900 São Caetano do Sul, SP, Praça Mauá n 1, Brazil
dc.description.affiliationIFSP-Suzano, 08673-010 Suzano, SP, Av. Mogi da Cruzes, 1501, Brazil
dc.description.affiliationETEC Getúlio Vargas, 04266-010 São Paulo, SP, R. Moreira e Costa, 243, Brazil
dc.identifier.scopus2-s2.0-84870991766
dc.citation.issue1-2
dc.citation.epage1190
dc.citation.spage1181
dc.citation.volume51


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record